

Métodos no-experimentales III (IV y RDD)

Alessandro Maffioli

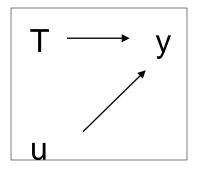
Taller de evaluación de impacto de programas de ciencia, tecnología e innovación 17-18 de Junio 2014, Ciudad de México

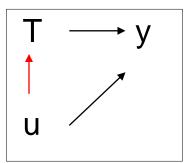
Variables Instrumentales (IV)

- La asignación aleatoria al tratamiento no siempre es posible
- En esos casos, aquellos que participan en el programa pueden tener características no observables que afectan su participación en el programa/tratamiento, resultando en un sesgo en la estimación del impacto (debido a por ej. capacidad de liderazgo, aprendizaje, motivación, etc.)
- Consideremos la siguiente expresión simple:

$$Y = \alpha + \beta * T + \gamma * X + u$$
 — Características no observables observables

IV: Introducción

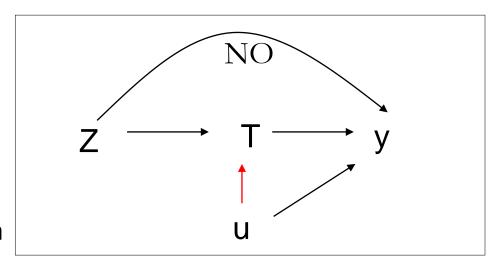

$$Y = \alpha + \beta * T + \gamma * X + u \leftarrow$$


$$Características$$

$$observables$$

- 1) Si no hay relación entre (*T*, *u*), el efecto de X en Y está capturado por g, y el efecto del programa en Y es capturado correctamente por **β**
- 2) Si hay correlación entre (*T,u*), no sabemos si el cambio en Y es atribuible a *T* o a *u*

Características no observables



IV: Introducción

$$Y = \alpha + \beta * T + \gamma * X + u \leftarrow$$
Características no observables

observables

Una variable instrumental o instrumento es una variable que está relacionada con la participación en el programa (relevancia) y no afecta el indicador de ninguna otra manera (exogeneidad)

Veamos algunos ejemplos de este tipo de variables...

De donde vienen los instrumentos?

- A veces, de la naturaleza del Proceso Generador de Datos (PGD), por ejemplo, Galiani, Rossi y Schargrodsky (2011) estiman el impacto del servicio militar en la probabilidad de convertirse en criminal
- La participación en el servicio militar obligatorio se basa en una lotería (número alto)
- Se usa el hecho de salir sorteado para participar como instrumento

De donde vienen los instrumentos?

- Attanasio y Vera-Hernández (2004) estiman el impacto de la creación de hogares comunitarios en la desnutrición infantil entre 0 y 6 años.
- Instrumento: distancia al hogar comunitario más cercano.
- Si los individuos no tienen en cuenta la distancia al elegir su ubicación, se la puede considerar independiente de Y.
- Nota: si se piensa que los individuos deciden su ubicación en base a la distancia al hogar comunitario, el instrumento no es válido.

De donde vienen los instrumentos?

- Otras veces puede crearlo el investigador interviniendo en el diseño del tratamiento. Una forma común de hacerlo es mediante un encouragement design.
- Se asigna aleatoriamente un paquete de incentivos, por ejemplo:
 - Folletos explicando los beneficios de un programa.
 - Bonificación por participar.
 - Reducciones del precio de una droga.
 - Etc.

Estimando IV

- El estimador de IV se estima en 2 etapas
- En general:
 - 1. Se estima la correlación entre la variable de tratamiento (T) y el instrumento (Z)
 - Se calcula el impacto de T en Y, utilizando la estimación de T obtenida en la primera etapa a través del instrumento
- Usando un modelo simple de la forma : Y = α + βT + u
 donde cov(T,u) ≠ 0; y asumiendo cov(Z,u) = 0 and cov(Z,T) ≠ 0:
 - 1. Estimar una regresión lineal entre T y Z, y predecir valores para T:

$$T = a + bZ + e \rightarrow Tp$$

2. Estimar la variable dependiente, Y, con los valores Tp estimados en la primera etapa:

$$Y = \alpha + \beta Tp + u$$

Limitaciones de IV

- Mide impacto local (LATE): el impacto sobre aquellos individuos/empresas cuyo comportamiento fue modificado/afectado por el instrumento ("compliers")
- Si el instrumento es "débil" (baja correlación entre T y
 Z) la estimación puede ser muy imprecisa.
- No funciona bien en muestras pequeñas ("nada funciona!")
- En la práctica, un buen instrumento es difícil de encontrar

Ej. de IV

- Binelli y Maffioli (2006) estudian el impacto de FONTAR en la innovación y gastos en I&D de empresas en Argentina
- Instrumento: número de Unidades de Vinculación Tecnológica (UTV) en cada provincia
 - Está correlacionado con la participación en el programa: cuanto mayor el número, mayor la probabilidad de participar
 - No está correlacionado con características de las firmas

Ej. de IV

Resultados

Table 13: FONTAR's impact on annual R&D expenditure (IV)

FNT=log(ar	mountFNT)
log(sales)	1.807*
	(0.996)
log(empl)	-1.984
	(1.658)
log(exports)	-0.551*
	(0.372)
log(sk/unsk)	-0.094
	(10.537)
FNT	4.622*
	(2.511)
cons	-1.362
	(11.85)
Year dummies	(Yes)
Number obs.	2094

^{*} Standard errors in parentheses. Fixed effects estimator. IV results.

Sources: Authors' calculations

^{**} indicates different from zero at 5% significance level.

^{*} indicates different from zero at 10% significance level.

Ej. 2 de IV

- Wallsten (2000) utiliza este enfoque para evaluar el impacto del SBIR (Small Business Innovation Research)
 - Cada agencia participante debe asignar una proporción fija de su presupuesto total para el SBIR -> el monto otorgado a través de SBIR depende del presupuesto total de cada agencia
 - Como el presupuesto de las agencias afecta la probabilidad de recibir financiamiento, pero no está correlacionado con características de las firmas, se puede usar como variable instrumental

Ej. 2 de IV

	OLS	Three-Stage Least Squares				
Dependent Variable	log	Number	Number	log		
	(Employment 1993)	Phase 1 Awards	Phase 2 Awards	(Employment 1993)		
Constant	.97	-2.96	-1.58	.94		
	(6.39)	(1.56)	(2.66)	(6.27)		
Number of Phase 2 awards, 1990–1992	.02 (3.33)			.01 (.94)		
SBIR budget instrument (\$100 millions)		11.40 (15.66)	3.91 (17.13)			
log (age)	20	.17	.20	19		
	(3.39)	(.23)	(.91)	(3.46)		
log (employment ₁₉₉₁)	.85	.42	.16	.85		
	(35.85)	(1.56)	(1.86)	(39.99)		
Patents 1988-1989	0007	.77	.29	.00		
	(.03)	(3.57)	(4.24)	(.23)		
Never applied	33 (2.47)			32 (2.41)		
Minority	03 (.51)	.08 (.10)	.19 (.70)			
Public	.46	.92	22	.45		
	(5.40)	(1.00)	(.75)	(5.45)		
R2 (481 observations)	.85	.48	.54	.85		

Note: Industry and geographic dummy variables are included but not shown. Absolute t-statistics in parentheses.

Regresión discontinua (RD)

- En general, los programas se asignan sobre la base de cierto criterio: necesidad, merito, trayectoria, etc.
- En muchos casos es necesario definir un regla "arbitraria":
 - Un hogar es "pobre" si su ingreso per-cápita es menor que \$X
 - Una firma es pequeña si sus ventas anuales no exceden los \$X
 - Una beca estudiantil es otorgada si los test de admisión superan cierto puntaje K

Regresión discontinua (RD)

- RD explota esta discontinuidad para estimar el impacto del programa
- Idea básica: el tratamiento es asignado sobre la base de una variable, llamada variable de asignación.
 - Si el valor de la variable cae en un lado del corte/umbral, la persona/empresa es asignada al grupo tratamiento
 - Si el valor de la variable cae del otro lado del corte/umbral, la persona/empresa es asignada al grupo control
- Interpretación local: las estimaciones sólo se pueden generalizar a las personas/empresas cerca del corte/umbral

RD: Intuición gráfica

Controles Tratados Indicador Impacto

Umbral

Variable de

asignación

RD: Supuestos básicos

- Las características de los individuos/empresas no "dan saltos" en torno al umbral, es decir, no presentan discontinuidades (la variable de resultado es una función continua de las características)
 - Esto nos permite suponer que los individuos/empresas de un lado y del otro del umbral son similares
- 2. Los individuos/empresas no pueden "manipular" con precisión la variable de asignación
 - El alumno no puede elegir su nota con exactitud (a pesar de que pueda modificarla con su esfuerzo)

Dos tipos de RD

Sharp RD

 El tratamiento es una función determinística del umbral de corte todo asignado para recibir el tratamiento lo recibe, mientras que aquellos no asignados no lo reciben ("full compliance")

Fuzzy RD

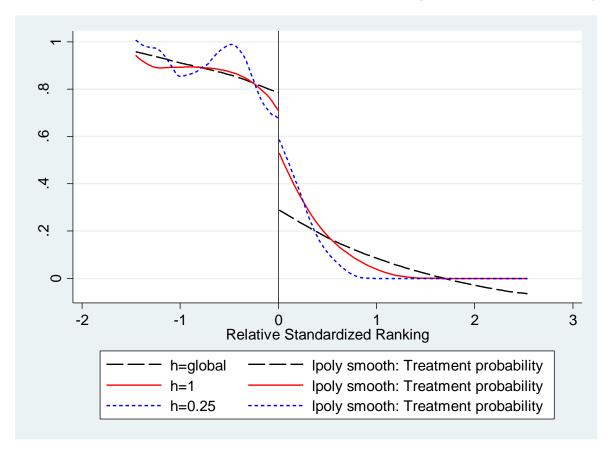
 Existe una probabilidad de tratamiento condicional en el umbral de corte → algunos individuos asignados al tratamiento no lo reciben, mientras que otros no asignados sí lo reciben

RD: Estimación

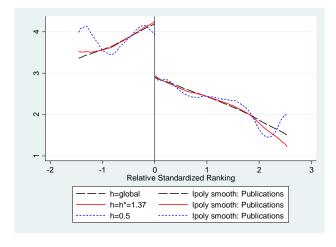
Estimación paramétrica:

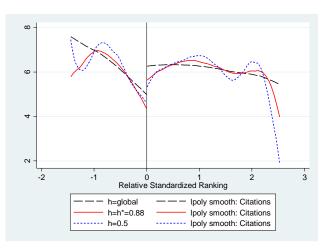
- Caso lineal: $Y = \alpha + \beta .1(VA>k) + \lambda .X + e$
- Caso no lineal: $Y = \alpha + \beta.1(VA>k) + f(X) + e$

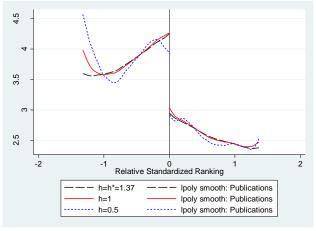
Estimación no-paramétrica:

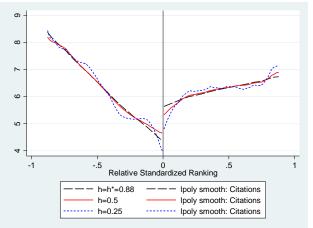

- Seleccionar una ventana o ancho de banda alrededor del umbral
- Estimación no paramétrica (regresión lineal local, regresión multivariada local, etc.) de las medias a ambos lados del umbral dentro de la ventana elegida

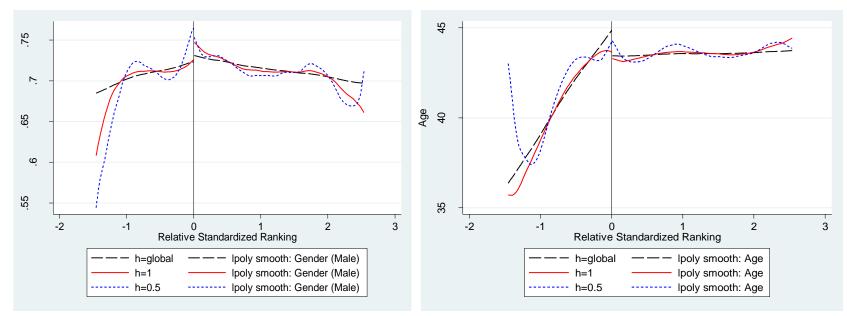
- Benavente, Crespi, Figal Garone y Maffioli (2012)
 evalúan el impacto de FONDECYT en el número y
 calidad de las publicaciones de investigadores en Chile
- Variable de asignación: posición en el ranking
- Regresión discontinua difusa (Fuzzy): la variable de asignación NO determina de manera determinística la participación en el programa -> puesto en el ranking como variable instrumental

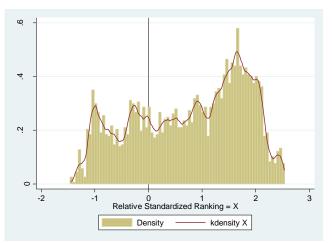

Probabilidad de tratamiento según el ranking

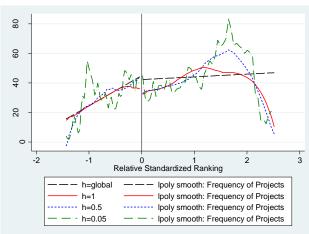



Variables de resultado según el ranking

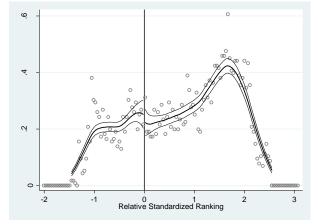

Todas las observaciones


Solo las observaciones al interior del h* de I&K


Características observables y ranking



Para testear ausencia de saltos o discontinuidades en torno al umbral que expliquen el salto en nuestro indicador de interés



Densidad y frecuencia de los proyectos por ranking

Para testear ausencia de manipulación de la variable de asignación

Efecto tratamiento en el Nro. de publicaciones

	(1)	(2)	(3)	(4)	(5)	(6)
COEFFICIENT	All	h=1.87	h=1.62	h*=1.37	h=1.12	h=0.87
D	2.9938***	3.5689***	3.7512***	4.2902***	4.9642**	6.3432*
	(1.065)	(1.192)	(1.325)	(1.583)	(1.985)	(3.474)
X	0.1886	0.6557	0.7520	1.2963	2.1680	3.2483
	(0.299)	(0.424)	(0.567)	(0.854)	(1.364)	(2.867)
D_X	1.9100***	1.6728**	1.6704**	1.3610*	0.6928	1.0658
	(0.727)	(0.739)	(0.744)	(0.786)	(1.025)	(1.501)
Age	-0.0203**	-0.0190	-0.0235*	-0.0316**	-0.0423**	-0.0439*
	(0.010)	(0.012)	(0.013)	(0.015)	(0.019)	(0.026)
Gender	0.1405	-0.0521	-0.1038	-0.0478	-0.1277	-0.2812
	(0.232)	(0.263)	(0.283)	(0.319)	(0.366)	(0.438)
No. of researchers	0.0872	0.0637	0.0837	0.0610	0.0535	-0.0217
	(0.061)	(0.071)	(0.080)	(0.091)	(0.101)	(0.124)
Duration	0.2307	0.1757	0.1468	0.2298	0.2398	0.3177
	(0.145)	(0.166)	(0.183)	(0.197)	(0.223)	(0.296)
Foreign member	-0.4830	-0.4484	-0.3549	-0.5374	-0.2228	-0.4471
	(0.365)	(0.398)	(0.444)	(0.474)	(0.539)	(0.668)
Constant	0.9575	0.5511	0.6755	0.6537	0.3048	0.0295
	(0.988)	(1.192)	(1.340)	(1.559)	(1.750)	(2.490)
Observations	3,101	2,634	2,272	1,942	1,632	1,208
R-squared	0.052	0.047	0.051	0.049	0.036	0.007

Robust standard errors in parentheses,*** p<0.01, ** p<0.05, * p<0.10

Scientific Disciplines, Region and Year dummies included. "D" is the treatment variable, "X" is the forcing variable (relative standardized ranking) and " D_X " is the interaction term.

Limitaciones de RD

- RD tiene una interpretación LOCAL: estima el impacto del programa solo para los individuos/empresas alrededor del punto o umbral de corte
- Potenciales problemas de poder estadístico si hay pocas observaciones alrededor del umbral de corte

